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DESIGN OF MINIMUM SEEPAGE LOSS CANAL SECTIONS WITH

DRAINAGE LAYER AT SHALLOW DEPTH

By Prabhata K. Swamee,1 Govinda C. Mishra,2 and Bhagu R. Chahar3

ABSTRACT: This paper presents an analytical solution for the quantity of seepage from a rectangular canal
underlain by a drainage layer at shallow depth. The solution has been obtained using inverse hodograph and
conformal mapping. Using the solution for the rectangular canal and the existing analytical solutions for trian-
gular and trapezoidal canals, simplified algebraic equations for computation of seepage loss from these canals,
when the drainage layer lies at finite depth, have been presented, which replace the cumbersome evaluation of
complex integrals. Using these seepage loss equations and a general uniform flow equation, simplified equations
for the design variables of minimum seepage loss sections have been obtained for each of the three canal shapes
by applying a nonlinear optimization technique. The optimal design equations along with the tabulated section
shape coefficients provide a convenient method for design of the minimum seepage loss section. A step-by-step
design procedure for rectangular and trapezoidal canal sections has been presented.

INTRODUCTION

Canals continue to be major conveyance systems for deliv-
ering water for irrigation. The seepage loss from irrigation
canals constitutes a substantial percentage of the usable water
(Rohwer and Stout 1948). According to the Indian Bureau of
Standards (IBS) (1980), the loss of water by seepage from
unlined canals in India generally varies from 0.3 to 7.0 m3/s
per 106 m2 of wetted surface. The seepage loss from canals is
governed by hydraulic conductivity of the subsoils, canal ge-
ometry, location of the water table relative to the canal, and
several other factors [International Commission on Irrigation
and Drainage (ICID) (1967)].

Analytical solutions for seepage from canals in a homoge-
neous isotropic porous medium of large depth have been given
by Vedernikov (Harr 1962) and Morel-Seytoux (1964). Swa-
mee et al. (2000) gave simplified algebraic equations in ex-
plicit form to compute the seepage from triangular, rectangu-
lar, and trapezoidal canals. However, in most alluvial plains
the soil is stratified. In many cases, highly permeable layers
of sand and gravel underlie the top low permeable layer of
finite depth. In that case the lower layer of sand and gravel
acts as a free drainage layer for the top seepage layer. The
seepage from a canal running through such stratified strata is
much more than that in homogeneous medium of very large
depth. The difference in quantity of seepage becomes appre-
ciable when the drainage layer lies at a depth less than twice
the depth of water in the canal. Further, the quantity of seepage
becomes very large as the drainage layer approaches the bed
of the canal. Bruch (1966) and Bruch and Street (1967a,b)
obtained an analytical solution for seepage from a triangular
canal in a soil layer of finite depth overlying the drainage
layer. Muskat (1946) and Vedernikov (Harr 1962) presented
an approximate solution for a trapezoidal canal. El Nimr
(1963), Hammad (1960), Garg and Chawla (1970), Sharma
and Chawla (1979), and Youngs (1986) dealt with different
orientations and positions of the draining layer.

An analytical solution for a rectangular canal has not been
reported in the literature. In this study, using inverse hodo-
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graph and conformal mapping, an analytical solution has been
obtained to compute seepage and loci of phreatic lines for a
rectangular canal. Analytical solutions for computing seepage
from rectangular, triangular, and trapezoidal canals contain
complex integrals involving unknown implicit transformation
variables. These solutions hence are not convenient in esti-
mating seepage from the existing canals and in designing ca-
nals. In the study, these analytical solutions have been simpli-
fied and explicit algebraic equations have been obtained to
facilitate easy computation of seepage from triangular, rectan-
gular, and trapezoidal canals when a drainage layer lies at shal-
low/finite depth.

Canals are lined to check the seepage. But canal lining de-
teriorates with time; hence, significant seepage losses continue
to occur from a lined canal (Wachyan and Rushton 1987).
Therefore, seepage loss must be considered in the design of a
canal section. Bandini (1966) considered seepage loss in the
canal design and compared the economy of lined and unlined
canals. Preissmann (1957), Ilyinsky and Kacimov (1984), and
Kacimov (1992) had investigated optimal shape and optimal
dimensions of a canal from a seepage point of view. Swamee
et al. (2000) presented a method for the design of minimum
seepage loss sections for canals running through a homoge-
neous medium of large depth. A design method of canals con-
sidering seepage, when a drainage layer or an aquifer lies at
finite depth, is not available in the literature. In this investi-
gation, using simplified seepage loss equations and the resis-
tance equation for open channel flow (Swamee 1995), explicit
design equations and section shape coefficients for minimum
seepage loss sections have been obtained for rectangular, tri-
angular, and trapezoidal canal shapes. An equation to compute
the seepage from the optimal seepage sections has also been
given.

SEEPAGE FROM RECTANGULAR CANAL

The seepage domain for a rectangular canal, underlain by a
drainage layer or an aquifer at a depth d (m), is shown in Fig.
1(a). It is assumed that the water table is below the top of the
drainage layer; hence, atmospheric pressure prevails at the bot-
tom of the seepage layer. The inverse hodograph dZ/dW [Fig.
1(c)] and the complex potential W [Fig. 1(d)] for the physical
flow domain were drawn following the standard steps (Harr
1962; Polubarinova-Kochina 1962). The dZ/dW-plane and W-
plane were mapped onto the lower half of an auxiliary z-plane
[Fig. 1(e)] using the Schwarz-Christoffel conformal transfor-
mation.

Mapping of the dZ/dW-plane onto the z-plane resulted in
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FIG. 1. Seepage from Rectangular Canal Underlain by Drainage
Layer: (a) Physical Plane; (b) Hodograph Plane; (c) Inverse Hodograph
Plane; (d) Complex Potential Plane; (e) Auxiliary Plane

z

dZ dt
= C 1 C (1)1 2EdW (t 2 g)(t 1 b)Ï0

where b and g = transformation variables; t = dummy variable;
and C1 and C2 = constants. The corresponding values at points
b9 (z = g; dZ/dW = 0) and h9 (z = 2b; dZ/dW = 2i/k) were
used in (1) to find C1 and C2. After substituting C1 and C2, (1)
became

z

dZ 1 dt
= (2)EdW pk (t 2 g)(b 1 t)Ïg

The W-plane mapping onto the z-plane gave
z

dt
W = C 1 C (3)3 4E

t(1 1 t)(b 1 t)Ï0

The constants C3 and C4 were determined using the values at
points c9 (z = 0; W = 0) and g9 (z = 21; W = kd ). After
substituting C3 and C4, (3) was expressed

z

kd b dtÏ
W = i (4)E

2K(1/ b) t(1 1 t)(b 1 t)Ï Ï0

where = complete elliptical integral of the first kindK(1/ b)Ï
with modulus . The elliptical integral of the first kind is1/ bÏ
defined by Byrd and Friedman (1971) as

sin w w

dt dt
F(k, w) = =E E2 2 2 2 2(1 2 t )(1 2 k t ) 1 2 k sin tÏ Ï0 0

with modulus k and amplitude w. When w = p/2, the integral
is said to be complete; i.e., F(k, p/2) = K(k).

Using the values at the point h9 (z = 2b; W = kd 1 iqs /2)
in (4), and equating the imaginary parts of the resulting ex-
pression, led to

K( (b 2 1)/b)Ï
q = 2kd (5)s

K(1/ b)Ï

where qs = seepage discharge per unit length of the canal
(m2/s).

Because dZ/dz = (dZ/dW)(dW/dz); substitution of dZ/dW
from (2) and dW/dz from (4) into it resulted in

z

dZ id b dt 1Ï
= SE Ddz 2pK(1/ b) (t 2 g)(b 1 t) z(1 1 z)(b 1 z)Ï Ï Ïg

(6)

Integrating (6) and applying the condition at c9 (z = 0; Z =
2iy )

z t
id b dtÏ

Z = 2iy 1 E SE D
2pK(1/ b) (t 2 g)(b 1 t)Ï Ï0 g

dt
?

t(1 1 t)(b 1 t)Ï (7)

where t and t = dummy variables. Eq. (7) defines the physical
domain of the seepage flow a9b9c9g9h9a9. For example, along
the bed of canal c9b9 (0 # z # g), (7) became

z

d b dtÏ
Z = 2iy 1 SE

2K(1/ b) t(1 1 t)(b 1 t)Ï Ï0

z
212 tan (b 1 t)/(g 2 t)Ï

2 dtE Dp t(1 1 t)(b 1 t)Ï0 (8)

At the corner of canal b9 (z = g, Z = b/2 2 iy); (8) reduced
to

2d b 2 1 g21b = F , sinS SÎ Î Db 1 1 gK(1/ b)Ï
g

21b tan (b 1 t)/(g 2 t)Ï Ï
2 dtE Dp t(1 1 t)(b 1 t)Ï0 (9)

where , = incomplete ellip-21F( (b 2 1)/b sin g/(g 1 1))Ï Ï
tical integral of the first kind with modulus and(b 2 1)/bÏ
amplitude .21sin g/(g 1 1)Ï

Similarly, (7) at the points g9 (z = 21; Z = 2id) and h9 (z
= 2b; Z = 2id 1 B/2) gave the relations for water depth in
the canal y (m) and seepage width at the drainage layer B (m),
respectively, as follows:

1
21d b tan (b 2 t)/(g 1 t)Ï Ï

y = dt (10)E
pK(1/ b) t(1 2 t)(b 2 t)Ï Ï0

2d b 2 1
B = KS SÎ DbK(1/ b)Ï

b
21b tan (b 2 t)/(g 1 t)Ï Ï

2 dtE Dp t(t 2 1)(b 2 t)Ï1 (11)

Finally the equation of the phreatic line a9h9 (2` < z <
2b) was given by

z t
b id b dt dtÏ

Z = 1 E SE D2 2pK(1/ b) (t 2 g)(b 1 t) t(1 1 t)(b 1 t)Ï Ï Ï2` g

(12)

Manipulating further, (12) reduced to
21/z

21b d b 2 tan (1 2 bt)/(1 1 gt)Ï Ï
Z = 1 dtS E2 p2K(1/ b) t(1 2 t)(1 2 bt)Ï Ï0

21/z
dt

2 i E D
t(1 2 t)(1 2 bt)Ï0 (13)
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FIG. 3. Error Diagram: (a) Rectangular Canal; (b) Triangular Canal

FIG. 2. Seepage Loss Variation with Location of Drainage Layer for
Rectangular Canal

Simultaneous solution of (5), (9), and (10) gives the seepage
discharge from the rectangular canal. Then, the location of the
phreatic line can be determined using (13). These equations
involve complicated integrals with unknown implicit transfor-
mation variables. These integrals were evaluated using Rom-
berg integration (Churchhouse 1981; Press et al. 1992) after
converting the improper integrals into proper integrals.

Based on the analytical solution presented above for a
rectangular channel and available analytical solutions for tri-
angular and trapezoidal canals, simplified functions for com-
putation of seepage from these canals were obtained using
numerical methods.

SIMPLIFIED EXPRESSIONS FOR SEEPAGE LOSS

Rectangular Section

The seepage from a rectangular canal was given by (5), in
which b was obtained by simultaneous solution of (9) and (10)
in the following form:

d p K(1/ b)Ï
= (14)1

21y bÏ tan (b 2 t)/(g 1 t)Ï
dtE

t(1 2 t)(b 2 t)Ï0

b p b 2 1 g21= F , sinHF SÎ Î Dy b 1 1 gbÏ
g

21tan (b 1 t)/(g 2 t)Ï
2 dtE G

t(1 1 t)(b 1 t)Ï0

1
21tan (b 2 t)/(g 1 t)Ï

0.5 dtY E J
t(1 2 t)(b 2 t)Ï0 (15)

Using (14) and (15) for a given b/y and d/y, the unknown
transformation variables b and g can be obtained by a trial-
and-error procedure. But (14) and (15) are highly implicit non-
linear in b and g; hence, the trial-and-error method is not
convenient and accurate for the present problem. Therefore,
for assumed values of b and g, (14) and (15) were used to
find b/y and d/y. Further, substituting b and d/y in (5), the
quantity of seepage was obtained. Repeating this process,
qs /ky was obtained for a large number of b (1 < b < `) and
g (0 < g < `) such that b/y and d/y are in the ranges 0 #
b/y # 1,000 and 1 < d/y # 1,000. The resulting values may
be used to prepare three set of graphs: (1) qs /ky versus b for
different g; (2) d/y versus b for different g; and (3) b/y versus
b for different g. Making use of these graphs, b and g were
eliminated to obtain variation in the seepage loss with bed

width for different depths of the drainage layer and plotted in
Fig. 2.

Using qs /ky, b/y, and d/y obtained as described above, the
following equation was fitted by minimization of errors (Cha-
har 2000):

2.380.842.5(b/y) 1 0.45 2 0.77q = ky 1 [(4p 2 p )s HS D0.69(d/y 2 1)

0.42

0.77 3.0941 (b/y) ] J
(16)

Fig. 3(a) depicts the errors involved in (16). The involved
error in the practical range (0.1 # y/b # 2) is <3.0%. As d/y
→ `, (16) reduces to

2 0.77 0.77 1.3q = ky((4p 2 p ) 1 (b/y ) ) (17)s

which gives qs from a rectangular canal when the drainage
layer or water table is at a very large depth (Chahar 2000;
Swamee et al. 2000).

Triangular Section

Using an inverse hodograph and conformal transformation,
Bruch (1966) gave the following expression for the quantity
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FIG. 4. Canal Sections: (a) Triangular Section; (b) Trapezoidal Section

of seepage from a triangular channel [Fig. 4(a)] in a soil layer
of finite depth overlying a drainage layer:

K(1/ b)Ï
q = 2kd (18)s

K( (b 2 1)/b)Ï
where the transformation variable b was given by

2b t
d dt

1 2 = Im (m 1 i)H FE SE D12s 0.51sy t (1 1 t) t 1 bÏ0 0

21 t
dt dt

? YE SE D12s 0.51st(1 1 t)(t 1 b) t (1 1 t) t 1 bÏ Ï0 0

dt
? GJ

t(1 1 t)(t 1 b)Ï (19)

where m = side slope (dimensionless); s = (1/p)cot21 (m); and
Im = imaginary part.

The value of b in (19) was obtained by the Fibonacci search
method (Bazaraa and Shetty 1979) for a given set of m and
d/y. Using b and d/y in (18), qs /ky was obtained. Repeating
the process, qs /ky was obtained for a large number of m and
d/y lying in the range 0 # m # 100 and 1 < d/y # 1,000.
Using these computations, the following equation for qs was
fitted:

9.35 0.1071.181.81m 1 2.1 2 1.3 1.3 7.2q = ky 1 ((4p 2 p ) 1 (2m) )s HS D J0.26(d/y 2 1)
(20)

The errors involved in (20) are shown in Fig. 3(b). The
errors are <2.0% in the practical range (0.5 < m < 5). As d/y
→ `, (20) reduces to the following equation for seepage for
the infinite depth case (Swamee et al. 2000):

2 1.3 1.3 0.77q = ky((4p 2 p ) 1 (2m) ) (21)s

Trapezoidal Section

Using the Zhukovsky function and conformal mapping,
Muskat (1946) and Vedernikov (Harr 1962) gave the following
approximate solution for the seepage from a trapezoidal canal
[Fig. 4(b)]:

K(b)
q = 2kd (22)s 2K( 1 2 b )Ï

where the transformation variable b was given by the simul-
taneous solution of the following equations:

2d mK( 1 2 b )Ï
= (23)21y K(b) 2 F(b, sin g)

21b 2mF(b, sin g) 2K(g)
= 2 (24)21 2y K(b) 2 F(b, sin g) K( 1 2 g )Ï

Using a process similar to that described for the rectangular
canal, qs /ky was obtained for a large number of m, b/y, and
d/y lying in the range 0.5 # m # 20; 0.5 # b/y # 50; and 1
< d/y # 100. Using the data so obtained for the trapezoidal
section for the above ranges, and the data for the triangular (b
= 0) and the rectangular (m = 0) sections obtained earlier, the
following equation was fitted:

1.3 0.93 0.9q = ky 1.81(m 1 1.432(b/y ) )s HS
p 2p p1 1 3

b 1 100my d
1 2 1D S D52.22b 1 47.62my 1 1.57bm y

1/p1

2 1.3 1.3 0.77p p p /p2 2 1 21 (((4p 2 p ) 1 (2m) ) 1 (b/y ) ) J
(25)

where

2.38b 1 7.48my 1 1 0.6m 0.318b 1 0.26my
p = ; p = ; p =1 2 3

b 1 0.8my 1.3 1 0.6m 0.461b 1 my

When the drainage layer is located at large depth, (25) be-
comes the following particular equation for the trapezoidal
section (Swamee et al. 2000):

2 1.3 1.3 (0.7710.462m)/(1.310.6m)q = ky [((4p 2 p ) 1 (2m) )s

(110.6m)/(1.310.6m) (1.310.6m)/(110.6m)1 (b/y ) ] (26)

The errors involved in (25) are <6% in the practical range
(0.5 < m < 5 and 0.5 < b/y < 10) for the trapezoidal section.
The higher errors occur at the extreme points; e.g., m = 0.5,
b/y = 1.3; m = 1.0, b/y = 0.5; and m = 2.0, b/y = 10.0. This
much error may be admissible in this type of problem, where
uncertainty lies in fixing hydraulic conductivity and depth of
the drainage layer.

An analysis of the seepage data for all three canal shapes
indicated that the aquifer/drainage layer could be assumed at
an infinite depth when d $ T 1 3y, where T = top width of
the canal at the water surface (m).

MINIMUM SEEPAGE LOSS SECTION

A rigid boundary canal is designed for the condition of uni-
form flow. Swamee (1994, 1995) gave the following uniform
flow equation:

ε 0.221n
V = 22.457 gRS ln 1 (27)Ï 0 S D12R R gRSÏ 0

where V = average flow velocity (m/s); g = gravitational ac-
celeration (m/s2); R = hydraulic radius (m) defined as the ratio
of the flow area A (m2) to the flow perimeter P (m); S0 =
longitudinal canal bed slope (dimensionless); ε = average
roughness height of the canal lining (m); and n = kinematic
viscosity of water (m2/s). Using the continuity equation and
(27), the discharge Q (m3/s) was obtained

ε 0.221n
Q = AV = 22.457A gRS ln 1 (28)Ï 0 S D12R R gRSÏ 0

Optimization Algorithm

The depth of flow in a uniform flow is the normal depth yn.
In such a case, the seepage loss is determined by replacing y
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TABLE 2. Limiting Velocities

Lining material
Limiting velocity

(m/s)

Boulder 1.0–1.5
Brunt clay tile 1.5–2.0
Concrete tile 2.0–2.5
Concrete 2.5–3.0

TABLE 1. Coefficients and Exponents for Minimum Seepage Canal
Sections

Entity
Coefficients
or exponents

Section Shape

Triangular Rectangular Trapezoidal

Side slope kms 1.2445 — 0.5984
tmd 0.4826 — 1.5156
rmd 3.1847 — 3.5709
smd 0.8232 — 0.1077

Bed width kbs — 0.7986 0.5447
tbd — 0.4922 0.6042
rbd — 2.5897 2.8821
sbd — 0.5571 0.5129

Normal depth kys 0.4518 0.3178 0.3309
tyd 0.5161 0.6293 0.6253
ryd 3.1465 2.8715 2.5376
syd 0.3177 0.3125 0.3608

Seepage loss kqs 2.0015 2.0399 1.9227
tqd 0.4385 0.4417 0.4372
rqd 2.8994 2.2473 2.0318
sqd 0.7238 0.5807 0.6551

with yn in (16), (20), and (25). Thus, the problem of deter-
mination of the minimum seepage loss section was reduced to

minimize q (29)s

ε 0.221n
subject to Q 1 2.457A gRS ln 1 = 0 (30)Ï 0 S D12R R gRSÏ 0

Adopting a length scale l (m)

0.4l = (Q/ gS ) (31)Ï 0

the following nondimensional variables were obtained:

ε = ε/l; n = nl/Q; y = y /l; b = b/l (32a–d )n* n* * *

2d = d/l; A = A/l ; R = R/l; q = q /(kl) (32e–h)s* s* * *

where subscript * denotes the corresponding nondimensional
parameter.

Using (29), (30), and (32), the problem of determination of
optimal canal section shape in nondimensional form was re-
duced to

minimize q (33)s*

ε 0.221n* *subject to F = 1 1 2.457A R ln 1 = 0Ï S D1.5* * 12R R* *
(34)

where F = equality constraint function.
As the objective function (33) and the constraint (34) are

nonlinear, an analytical solution with its proof of uniqueness
and globality at the optimum is very difficult. A practical so-
lution to such a problem was obtained through a numerical
method with multiple starts and testing convergence. The fol-
lowing paragraph describes the optimization algorithm used
for this purpose.

The constrained optimization problem was converted into
an unconstrained optimization problem using the penalty func-
tion (Fox 1971). The auxiliary function C for the uncon-
strained optimization problem was expressed

2C = q 1 pF (35)s*

where p = penalty parameter. Adopting small p initially, (35)
was minimized using a grid or lattice search method (Burley
1974) to find the design variables. Increasing p 10-fold, the
minimization was carried through various cycles until the op-
timization results stabilized. Alternatively, Powel’s conjugate
direction search method (Himmelblau 1972; Avriel 1976) can
be used for minimizing (35).

Optimal Design Equations

The optimization algorithm was applied on triangular, rec-
tangular, and trapezoidal canal sections for a number of input
variables varying in the ranges

26 23 27 2510 # ε # 10 ; 10 # n # 10 (36a,b)* *

0.01 # d < ` (36c)*

Analysis of a large number of optimal sections so obtained
for triangular, rectangular, and trapezoidal canal sections re-
sulted in the following generalized empirical equations for all
three types of canal sections:

r smd md
t Lmd

m* = k 1 1 (37a)ms F S D Gd

r sbd bd
t Lbd

b* = k 1 1 L (37b)bs F S D Gd
r 2syd ydt Lyd

y* = k 1 1 L (37c)n ys F S D Gd

where superscript * indicates optimality; kfs and tfs = section
shape coefficients; rfs and sfs = exponents; and L = length scale
(m) given by

0.04L = l(ε 1 8n ) (38)* *

The first subscripts m, b, and y denote side slope, bed width,
and normal depth, respectively, and the second subscripts s
and d denote seepage loss cases corresponding to the drainage
layer at infinite depth and finite depth, respectively. The op-
timal section shape coefficients and exponents are listed in
Table 1.

For a given set of data, a direct optimization procedure
[minimize (33) subject to constraint (34)] can be adopted for
the design of minimum seepage loss irrigation canal sections.
This requires a considerable amount of programming and com-
putation work. On the other hand, using optimal design equa-
tions [(37a–c)] along with tabulated section shape coefficients
and exponents (Table 1), the optimal design variables can be
obtained in a single step computation. For the designed sec-
tion, (28) can be used to obtain the average flow velocity. This
velocity should be greater than the nonsilting velocity but less
than the limiting velocity VL. The limiting velocity depends on
the lining material. Table 2 lists the limiting velocities for dif-
ferent types of linings (IBS 1982). If V > VL, a superior lining
material should be selected. The quantity of seepage from the
designed section can be obtained using (16), (20), or (25),
depending upon the type of section; however, the following
equation closely approximated the seepage from a minimum
seepage section:

r sqd qdt Lqd
q* = k 1 1 kL (39)s qs F S D Gd
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FIG. 5. Properties of Minimum Seepage Loss Canal Sections: (a)
Seepage Loss and Side Slope; (b) Normal Depth and Bed Width

where the first subscript q in coefficients and exponents de-
notes seepage discharge. For a large d/L ratio, (37) and (39)
reduce to corresponding equations (Swamee et al. 2000) for
the minimum seepage loss section when the water table is at
a large depth; i.e.

m* = k ; b* = k L; y* = k L; q* = k kL (40a–d )ms bs n ys s qs

The behavior of the optimal design equations [(37a–c) and
(39)] was plotted in Fig. 5. A perusal of Fig. 5 reveals that
the minimum seepage section becomes wider and shallower as
the canal bed approaches the drainage layer. The minimum
seepage section becomes impractical (T > 20yn) for d < 0.22L.
For L > d, the optimal canal dimensions are hypersensitive.
For d < 0.01L, the optimal section results in a meaningless
strip (T > 12,000yn). On the other hand, the optimal section
approaches its counterpart corresponding to the water table or
drainage layer at very large depth for d $ 3L. A minimum
seepage loss trapezoidal section has the least seepage com-
pared to the optimal triangular and rectangular sections. For L
> 1.8d, a triangular canal loses the highest seepage, whereas
the seepage from an optimal rectangular canal approaches the
seepage from an optimal trapezoidal canal.

The optimal section design equations [(37a–c)] are inde-
pendent of k, which shows that the optimal canal dimensions
do not depend on the hydraulic conductivity of the seepage
layer through which a canal passes. This is so because, for 2D
seepage in the vertical plane, k disappears from the governing
Laplace’s equation and qs becomes a linear function of k.

DESIGN EXAMPLES

Example 1

Design a minimum seepage loss concrete-lined rectangular
canal section for carrying a discharge of 50 m3/s on a longi-
tudinal slope of 0.0004. The canal passes through a stratum
underlain by a highly pervious layer at a depth of 5 m.

Example 1 Design Steps

For the design, g = 9.79 m/s2, n = 1.007 3 1026 m2/s (water
at 207C), and ε = 1 mm (concrete lining) are adopted.

Using (31), l = 14.488 m; (32a), = 6.902 3 1025; (32b),ε*
= 2.918 3 1027; (32e), = 0.345; and (38), L = 9.889 m.n d* *

Using Table 1, the section shape coefficients and exponents
for a rectangular section are, for bed width, kbs = 0.7986, tbd

= 0.4922, rbd = 2.5897, and sbd = 0.5571; for normal depth, kys

= 0.3178, tyd = 0.6293, ryd = 2.8715, and syd = 0.3125; and, for
seepage, kqs = 2.0399, tqd = 0.4417, rqd = 2.2473, and sqd =
0.5807.

Assuming a drainage layer at large depth [(40b,c)], give b*
= 0.7986 3 9.889 = 7.897 m and = 0.3178 3 9.889 =y*n
3.143 m. Thus, A = b* 3 = 24.823 m2. Further, assumingy*n
that the lining is cracked and k = 1026 m/s, (40d ) yields qs =
2.0399 3 1026 3 9.890 = 2.0175 3 1025 m2/s whereas (16)
results in actual seepage loss qs = 1026 3 3.143 3 10.059 =
3.1616 3 1025 m2/s.

Using (37b), b* = 0.7986 3 1.4436 3 9.889 = 11.400 m,
and using (37c), = 0.3178 3 0.7189 3 9.889 = 2.259 m.y*n
Therefore, A = 11.400 3 2.259 = 25.769 m2 and V = 50/25.769
= 1.940 m/s, which is within the permissible limit (Table 2).
Using (39), the seepage loss qs = 2.0399 3 1.3786 3 1026 3
9.889 = 2.7813 3 1025 m2/s.

The design shows that the optimal section is influenced very
much by the presence of a drainage layer at the shallow depth.
The optimal section for the drainage layer at shallow depth
results in 28.11% less yn, 44.36% more b, and 12.03% less
seepage than the optimal section considering a drainage layer
at a large depth.

Example 2

Design a trapezoidal canal section for Q = 250 m/s, S =
0.0001, and d = 7.5 m.

Example 2 Design Steps

Following the steps similar to the rectangular section, l =
36.393 m, = 2.748 3 1025, = 1.466 3 1027, = 0.206;ε n d* * *
and L = 23.950 m.

The section shape coefficients from Table 1 are, for side
slope, kms = 0.5984, tmd = 1.5156, rmd = 3.5709, and smd =
0.1077; for bed width, kbs = 0.5446, tbd = 0.6042, rbd = 2.8821,
and sbd = 0.5129; for normal depth, kys = 0.3309, tyd = 0.6253,
ryd = 2.5376, and syd = 0.3608; and for seepage, kqs = 1.9227,
tqd = 0.4372, rqd = 2.0318, and sqd = 0.6551.

Using (37a–c), m = 1.098, b* = 37.042 m, and = 3.972y*n
m. Therefore, A = 164.454 m2 and V = 250/164.454 = 1.520
m/s, which is safe. Using (39) with k = 1026 m/s, qs = 1.9227
3 2.0406 3 1026 3 23.954 = 9.3983 3 1025 m2/s. Assuming
the drainage layer at large depth, the canal dimensions are m
= 0.598, b* = 13.045 m, and = 7.926 m.y*n

CONCLUSIONS

An analytical solution for the seepage from a rectangular
canal when a pervious layer lies at a finite depth has been
obtained by use of inverse hodograph and conformal mapping.
The analytical solution for the rectangular canal and the ex-
isting analytical solutions for triangular and trapezoidal canals
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involve complicated integrals with unknown implicit transfor-
mation variables. These solutions have been expressed as a
simple algebraic function of canal geometry and depth of the
drainage layer. These simplified expressions for computing
seepage losses from triangular, rectangular, and trapezoidal ca-
nals replace approximately the cumbersome evaluation of
seepage by analytical methods. Optimal design equations and
section shape coefficients for all three canal shapes have been
obtained to facilitate design of minimum seepage loss canals.
The method overcomes the complexity in design of the min-
imum seepage loss canal section by a constrained nonlinear
optimization technique. The optimal design equations show
that the minimum seepage section becomes very wide and
shallow as the canal bed approaches the drainage layer. On
the other hand, the minimum seepage section attains m = 1.244
for a triangular canal, ratio of bed width to normal depth =
2.513 for a rectangular canal, and m = 0.598 and ratio of bed
width to normal depth = 1.646 for a trapezoidal canal when d
$ T 1 3yn. The optimization method can be extended to in-
vestigate the robustness of the optimal shape subject to small
perturbations in the constraint function (i.e., selecting the con-
straint as a Manning equation or other uniform flow formula
and then comparing the results). The optimal canal dimensions
do not depend on the hydraulic conductivity of the seepage
layer through which a canal passes. The proposed design
method is very simple, as demonstrated by the design exam-
ples.

REFERENCES

Avriel, M. (1976). Nonlinear programming analysis and methods, Pren-
tice-Hall, Englewood Cliffs, N.J.

Bandini, A. (1966). ‘‘Economic problem of irrigation canals: Seepage
losses.’’ J. Irrig. and Drain. Div., ASCE, 92(4), 35–57.

Bazaraa, M. S., and Shetty, C. M. (1979). Nonlinear programming: The-
ory and algorithms, Wiley, New York.

Bruch, J. C. (1966). ‘‘Studies of free surface flow and two dimensional
dispersion in porous media.’’ PhD thesis, Dept. Civ. Engrg., Stanford
University, Stanford, Calif.

Bruch, J. C., and Street, R. L. (1967a). ‘‘Seepage from an array of tri-
angular channels.’’ J. Engrg. Mech. Div., ASCE, 93(3), 63–82.

Bruch, J. C., and Street, R. L. (1967b). ‘‘Free surface flow in porous
media.’’ J. Irrig. and Drain. Div., ASCE, 93(3), 125–145.

Byrd, P. F., and Friedman, M. D. (1971). Handbook of elliptic integrals
for engineers and scientists, Springer, Berlin.

Burley, D. M. (1974). Studies in optimization, International Text Book
Co., Beds, U.K.

Chahar, B. R. (2000). ‘‘Optimal design of channel sections considering
seepage and evaporation losses.’’ PhD thesis, Dept. of Civ. Engrg.,
University of Roorkee, Roorkee, India.

Churchhouse, R. F. (1981). Numerical methods. Handbook of applied
mathematics, Vol. 3, Wiley, New York.

El Nimr, A. (1963). ‘‘Seepage from parallel trapezoidal channels.’’ J.
Engrg. Mech. Div., ASCE, 89(4), 1–11.

Fox, R. L. (1971). Optimization methods for engineering design, Addi-
son-Wesley, Reading, Mass.

Garg, S. P., and Chawla, A. S. (1970). ‘‘Seepage from trapezoidal chan-
nels.’’ J. Hydr. Div., ASCE, 96(6), 1261–1282.

Hammad, H. Y. (1960). ‘‘Seepage losses from parallel channels.’’ J.
Engrg. Mech. Div., ASCE, 86(4), 42–50.

Harr, M. E. (1962). Groundwater and seepage, McGraw-Hill, New York.
Himmelblau, D. M. (1972). Applied nonlinear programming, McGraw-

Hill, New York.
Ilyinsky, N. B., and Kacimov, A. R. (1984). ‘‘Seepage-limitation opti-

mization of the shape of an irrigation channel by the inverse boundary
value problem method.’’ J. Fluid Dyn., 19(4), 404–410.

Indian Bureau of Standards (IBS). (1980). ‘‘Measurement of seepage
losses from canals.’’ IS:9452, Parts 1 and 2, New Delhi.

Indian Bureau of Standards (IBS). (1982). ‘‘Criteria for design of lined
canals and guidelines for selection of type of lining.’’ IS:10430, New
Delhi.

International Commission on Irrigation and Drainage (ICID). (1967).
‘‘Controlling seepage losses from irrigation canals.’’ Worldwide survey,
New Delhi.

Kacimov, A. R. (1992). ‘‘Seepage optimization for trapezoidal channel.’’
J. Irrig. and Drain. Engrg., ASCE, 118(4), 520–526.

Morel-Seytoux, H. J. (1964). ‘‘Domain variations in channel seepage
flow.’’ J. Hydr. Div., ASCE, 90(2), 55–79.

Muskat, M. (1946). Flow of homogeneous fluids through porous media,
J. W. Edwards Brothers, Inc., Ann Arbor, Mich.

Polubarinova-Kochina, P. Ya. (1962). Theory of ground water movement,
Princeton University Press, Princeton, N.J.

Preissmann, A. (1957). ‘‘A propos de la filtration au-dessous des canaux.’’
Houille Blanche, 12, 181–188 (in French).

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P.
(1992). Numerical recipes in FORTRAN, Cambridge University Press,
Cambridge, U.K.

Rohwer, C., and Stout, O. V. P. (1948). ‘‘Seepage losses from irrigation
canals.’’ Tech. Bull. 38, Colorado Agricultural Experiment Station, Fort
Collins, Colo.

Sharma, H. D., and Chawla, A. S. (1979). ‘‘Canal seepage with boundary
at finite depth.’’ J. Hydr. Div., ASCE, 105(7), 877–897.

Swamee, P. K. (1994). ‘‘Normal-depth equations for irrigation canals.’’
J. Irrig. and Drain. Engrg., ASCE, 120(5), 942–948.

Swamee, P. K. (1995). ‘‘Optimal irrigation canal sections.’’ J. Irrig. and
Drain. Engrg., ASCE, 121(6), 467–469.

Swamee, P. K., Mishra, G. C., and Chahar, B. R. (2000). ‘‘Design of
minimum seepage loss canal sections.’’ J. Irrig. and Drain. Engrg.,
ASCE, 126(1), 28–32.

Wachyan, E., and Rushton, K. R. (1987). ‘‘Water losses from irrigation
canals.’’ J. Hydro., Amsterdam, 92(3-4), 275–288.

Youngs, E. G. (1986). ‘‘Water-table heights and discharge rates with ar-
tesian flow to interceptor land drains.’’ J. Hydro., Amsterdam, 87(3-4),
255–266.

NOTATION

The following symbols are used in this paper:

A = flow area of canal (m2);
B = seepage width at drainage layer (m);
b = bed width of canal (m);
d = depth of drainage layer/aquifer (m);

F(k, w) = incomplete elliptical integral of first kind (dimen-
sionless);

g = gravitational acceleration (m/s2);
K(k) = complete elliptical integral of first kind (dimension-

less);
k = hydraulic conductivity (m/s);

kfs, tfs = section shape coefficients for subscripts f and s (di-
mensionless);

L = length scale (m);
m = side slope of canal (dimensionless);
p = penalty parameter (dimensionless);

p1, p2, p3 = exponents (dimensionless);
Q = discharge (m3/s);
qs = seepage discharge per unit length of canal (m2/s);
R = hydraulic radius (m);

rfs, sfs = exponents for subscripts f and s (dimensionless);
S0 = bed slope of canal (dimensionless);
T = width of canal at water surface (m);
V = average velocity (m/s);

VL = limiting velocity (m/s);
W = f 1 ic complex potential (m2/s);
X = real axis of complex plane (m);
Y = imaginary axis of complex plane (m);
y = water depth in canal (m);

yn = normal depth of flow in canal (m);
Z = X 1 iY complex plane variable (m);

b, g = transformation variable (dimensionless);
ε = average roughness height of canal lining (m);
z = complex variable in auxiliary plane (dimensionless);
k = modulus of elliptical integral (dimensionless);
l = length scale (m);
n = kinematic viscosity (m2/s);

t, t = dummy variable (dimensionless).
F = equality constraint (dimensionless);
f = velocity potential (m2/s);
w = amplitude of elliptical integral (dimensionless);
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C = augmented function (dimensionless); and
c = stream function (m2/s).

Subscripts

b = bed width;
d = seepage case for drainage layer at shallow depth;
m = side slope;

q = seepage discharge;
s = seepage case for drainage layer at large depth;
y = normal depth; and
* = nondimensional.

Superscript

* = optimal.


